
Beam Design

Beam Design	John Smith	Location	123 S 234 W Provo, UT 84604		^{Јов. No.} 2025 - 002
Nathaniel Wilkerson	MEDELK LINGINEL		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design.r	84058 medeek.com	COMPANY LOGO	Engineering LLC.	Page 1

Copyright © 2025

1. Beam Data

2. Design Options

Beam Type: Glulam Lateral Support (B): braced Species: Western Species Lateral Support (T): braced 24F-V4 1.8E DF/DF Grade: Defl. Limits: 360|240 Size: 3.5 x 9 Load Duration: 1.15 Beam Length: 9.45 ft. Exposure: dry Beam Ply (N): $T \le 100^{\circ}F$ Temperature: 1 Code Standard: ASCE7-22, NDS 2024 Orientation: Vertical Incised: Notes: Yes Rep. Members: No

3. Adjustment Factors

Factor	Description	F _b	F _t	$F_{\mathbf{v}}$	F _c	F _{c⊥}	E/E _{min}
$C_{\mathbf{D}}$	Load Duration Factor	1.15	1.15	1.15	1.15	-	-
$C_{\mathbf{M}}$	Wet Service Factor	1.0 ^b	1.0	1.0	1.0 ^c	1.0	1.0
C_{t}	Temperature Factor	1.0	1.0	1.0	1.0	1.0	1.0
C_{L}	Beam Stability Factor		-	-	-	-	-
C_{F}	Size Factor	1.1	1.1	-	1.0	-	-
C_{fu}	Flat Use Factor	1.2 ^d	-	-	-	-	-
C _i	Incising Factor	1.0	1.0	1.0	1.0	1.0	1.0
C_r	Rep. Member Factor	1.0	-	-	-	-	-

a) Adjustment factors per AWC NDS 2024 and NDS 2024 Supplement.

Beam Design	John Smith	Location 12	23 S 234 W Provo, UT 84604	1	2025 - 002
Nathaniel Wilkerson	MEDEEK ENGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC.	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design.	.medeek.com	COMPANY LOGO	Copyright © 2025	Page 2

b) When $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0.$

c) When $(F_c)(C_F) \le 750 \text{ psi}$, $C_M = 1.0$.

d) Only applies when sawn lumber or glulam beams are loaded in bending about the y-y axis.

6. Beam Calculations

Determine reference design values, sectional properties and self weight of beam:

$$A = b \times d = 1.5 \times 9.25 = 13.875 \text{ in.}^2$$

$$S_x = \frac{bd^2}{6} = (1.5)(9.25)^2/6 = 21.391 \text{ in.}^3$$
, $S_y = \frac{b^2d}{6} = (1.5)^2(9.25)/6 = 3.469 \text{ in.}^3$

$$I_X = \frac{bd^3}{12} = (1.5)(9.25)^3/12 = 98.932 \text{ in.}^4, \quad I_y = \frac{b^3d}{12} = (1.5)^3(9.25)/12 = 2.602 \text{ in.}^4$$

Reference Design Values from Table 4A NDS Supplement (Reference Design Values for Visually Graded Dimension Lumber, 2" - 4" thick).

Species & Grade	F _b	F _t	F_v	F _{c⊥}	F _e	Е	E _{min}	SG
DF No.1	1000	675	180	625	1500	1700000	620000	0.5

The following formula shall be used to determine the density of wood (lbs/ft³. (NDS Supplement Sec. 3.1.3)

$$\rho_{\rm W} = 62.4 \left\lceil \frac{SG}{1 + SG(0.009)(m,c)} \right\rceil \left\lceil 1 + \frac{m.c.}{100} \right\rceil = 62.4 \left\lceil \frac{0.5}{1 + 0.5(0.009)(19)} \right\rceil \left\lceil 1 + \frac{19}{100} \right\rceil = 34.2 \text{ lbs/ft}^3$$

where:

08/05/2025

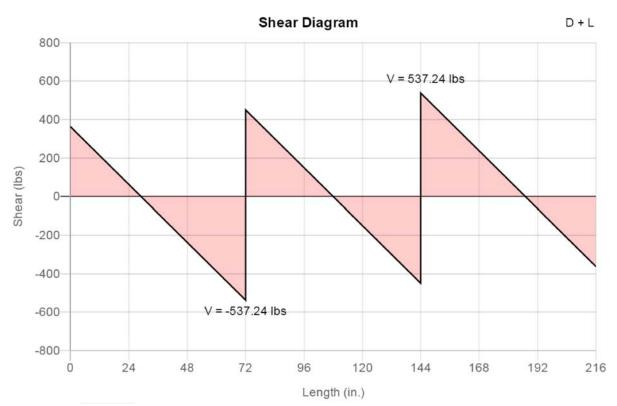
 $\rho_{\rm w}$ = Density of wood (lbs/ft³

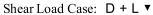
SG = 0.5 Specific gravity of wood (dimensionless)

m.c. = 19 % (Max. moisture content at dry service conditions)

Volume_{beam} = N[A × L] = 1 × [13.875 × 216.0]
$$\div$$
 (12 in./ft.)³ = 1.73 ft³

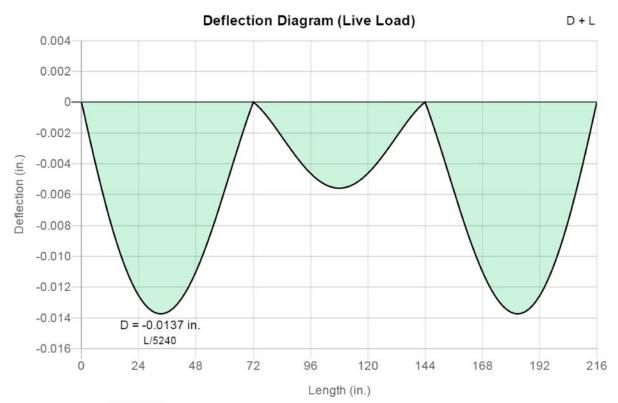
Self Weight (W_S) =
$$\rho_{\rm w} \times {\rm Volume_{beam}} = 34.2 \times 1.73 = 59.32 \ {\rm lbs}$$

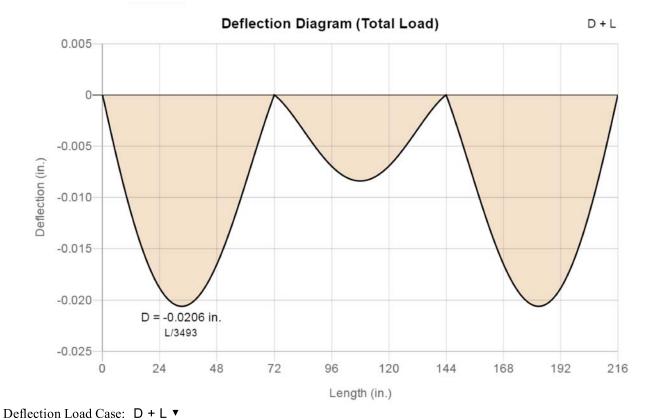

Distributed Self Weight (w_s) =
$$\frac{W_S}{L} = \frac{59.32}{18.0} = 3.296 \text{ plf}$$


Beam Design	Customer John Smith	Location 12	23 S 234 W Provo, UT 8460	4	Job. No. 2025 - 002
Nathaniel Wilkerson	MEDEEK ENGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.

3

Copyright © 2025


1927 \$ 1030 W Orem, Utah 84058 ph. 425-652-4188 design.medeek.com



Beam Design	Customer John Smith	Location 123	S 234 W Provo, UT 84604		2025 - 002
Nathaniel Wilkerson	MEDEEK ENGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design	.medeek.com	COMPANY LOGO	Copyright © 2025	Page 4

Deflection Load Case: D + L ▼

Beam Design	John Smith	Location 12	23 S 234 W Provo, UT 84604		2025 - 002
Nathaniel Wilkerson	MEDELK LINGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC.	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design.	n 84058 .medeek.com	COMPANY LOGO	Copyright © 2025	Page 5

2.) Shear:

Members subject to shear stresses shall be proportioned so that the actual shear stress parallel to grain or shear force at any cross section of the bending member shall not exceed the adjusted shear design value:

$$f_v \le F_v$$
' (NDS Sec. 3.4.1)

where:

$$f_V = \frac{3V}{2A}$$

$$F_v' = F_v(C_D)(C_M)(C_t)$$

$$F_{vx}' = (180)(1.0)(1.0)(1.0) = 180.00 \text{ psi}$$

$$f_v = \frac{3V}{2(N \times A)} = \frac{3(537.24)}{2(1 \times 13.875)} = 58.08 \text{ psi}$$

$$f_v = 58.08 \text{ psi} < F_{vx}' = 180.00 \text{ psi} \text{ (CSI} = 0.32) \rightarrow \textbf{OK}$$

3.) Deflection:

Bending deflections calculated per standard method of engineering mechanics for live load and total load:

LL Allowable: L/360 TL Allowable: L/240

$$E_x' = E_x(C_M)(C_t)(C_i) = 1700000(1.0)(1.0)(1.0) = 1700000 \text{ psi}$$

$$\Delta_{LL} = -0.0137$$
 in.

$$(L/d)_{LL} = 72.0 / -0.0137 = 5240$$

$$\Delta_{LL} = -0.0137 \text{ in} = L/5240 < L/360 \rightarrow \text{OK}$$

Calculations shown for load combination "D + L" at location x=33 in.

$$\Delta_{\rm TL}$$
 = -0.0206 in.

$$(L/d)_{TL} = 72.0 / -0.0206 = 3493$$

$$\Delta_{TL} = -0.0206 \text{ in} = L/3493 < L/240 \rightarrow \text{OK}$$

Calculations shown for load combination "D + L" at location x = 33 in.

Beam Design	Customer John Smith	Location	123 S 234 W Provo, UT 84604		2025 - 002
Nathaniel Wilkerson	MEDEEK ENGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC,	Rev.
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design		COMPANY LOGO	Converget © 2025	Page 6

4.) Bearing:

Members subject to bearing stresses perpendicular to the grain shall be proportioned so that the actual compressive stress perpendicular to grain shall be based on the net bearing area and shall not exceed the adjusted compression design value perpendicular to grain:

$$f_{c\perp}\!\leq\!F_{c\perp}$$
 (NDS Sec. 3.10.2)

where:

$$F_{c\perp}' = F_{c\perp}(C_M)(C_t)(C_i)$$

$$F_{c\perp x}' = (625)(1.0)(1.0)(1.0) = 625.00 \text{ psi}$$

$$f_{c\perp} = \frac{R}{A_b}$$

$$A_b = b \times l_b = 1.5 \times 3.5 = 5.25 \text{ in}^2$$

$$f_{c\perp} = \frac{R}{N \times A_b} = \frac{987.24}{1 \times 5.25} = 188.0 \text{ psi}$$

$$f_{c\perp} = 188.0 \text{ psi} < F_{c\perp x}' = 625.00 \text{ psi (CSI} = 0.30)$$
 \rightarrow **OK**

Calculations shown for load combination "D + L" at support S4.

Beam Design	John Smith	123	S 234 W Provo, UT 84604		2025	-002
Nathaniel Wilkerson	MEDELK LINGINE		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Medeek Engineering LLC.	Rev.	-
08/05/2025	1927 \$ 1030 W Orem, Utah ph. 425-652-4188 design.	84058 medeek.com	COMPANY LOGO	Copyright © 2025	Page 7	7

^{*}Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the potential load cases required to fully design an actual structure may not be provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2021 Sec. R106.1 and R802.10.2 and designed according to the minimum requirements of ASCE 7-22. The beam calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.