Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg):	15.0 psf
Roof Pitch:	4 /12
Risk Category:	II
Eave-to-Ridge (W):	28 ft.
Terrain Category:	С
Exposure:	Fully Exposed
Thermal Factor (Ct):	1.20
Roof Surface:	Metal
Roof System:	Common Truss
Spacing:	96 in. o/c
Overhang:	6 in.

2. Design Loads

Top Chord Dead Load:	7	psf
Bottom Chord Dead Load:	10	psf
SF (Slope Factor) = 1/Cosine(Φ) =	1.05 (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)
Adj. TCDL (TCDL x SF):	7.4	psf

3. Design Assumptions

Code Standard:	ASCE 7-10
Number of Plies:	1 PLY
Bottom Chord Pitch:	0 /12

4. Snow Load Calculations

Calculate flat roof snow load $p_{\rm f}$ using the following equation:

 $p_f \!=\! 0.7 C_e C_t I_s p_g$

where:

 $\begin{array}{l} p_{f} = Flat \ Roof \ Snow \ Load \ in \ psf \\ C_{e} = 0.90 = Exposure \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-2 \ (Terrain \ Cat. \ C, \ Exp. \ Fully \ Exposed) \\ C_{t} = 1.20 = Thermal \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-3 \\ I_{s} = 1.00 = Importance \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 1.5-2 \ (Risk \ Cat. \ II) \\ p_{g} = 15.0 \ psf = Ground \ Snow \ Load \ in \ psf \end{array}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(0.90)(1.20)(1.00)(15.0) = 11.3 \text{ psf}$

Subject	Customer	Location			Job No.
Snow Loads					2025A17
Engr. Name	STRUCTURAL EN		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc. Copyright © 2025	Rev.
Date 2/1/2025	Street Address City, ST 9999 ph. (800) 000-0000 www.w	99 vebsite.com	COMPANY LOGO		Page 1

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, pm, does not apply.

For locations where p_g is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (18.43°) is greater than W/50 = 0.6, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

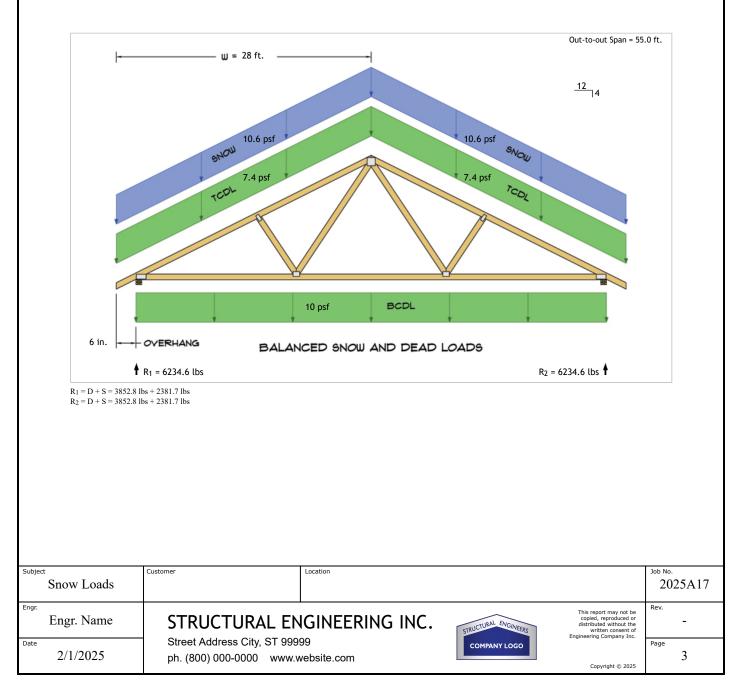
 $p_s = C_s p_f$

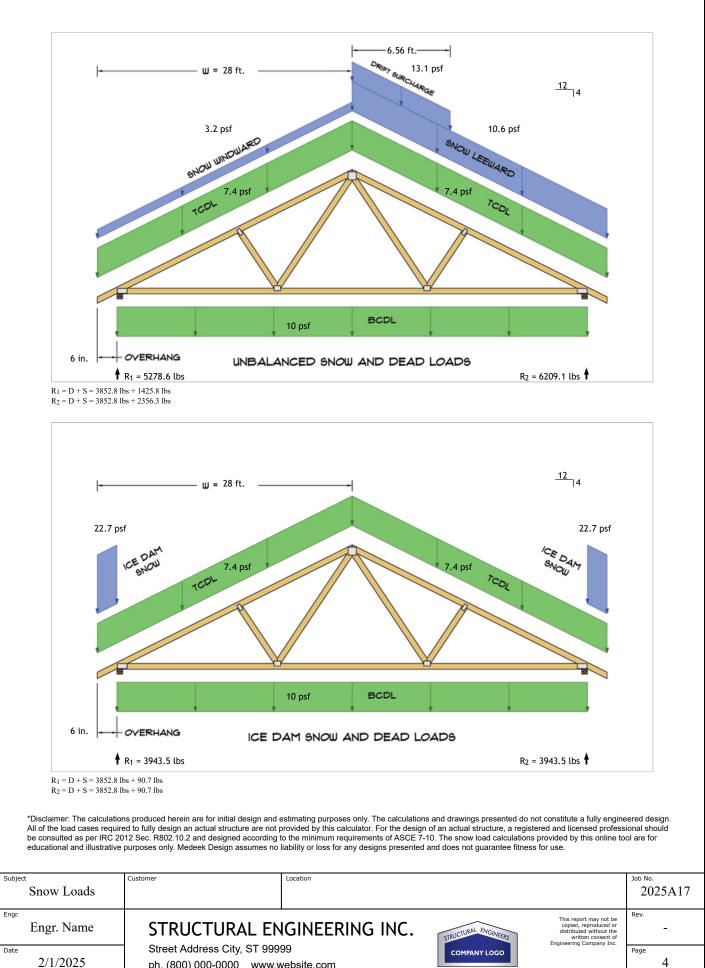
where:

 $p_s =$ Sloped Roof Snow Load in psf $C_s = 1-[(18.43-15)/55] = 0.94 =$ Roof Slope Factor, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2 $p_f =$ Flat Roof Snow Load in psf

Roof surface (Metal) is considered a "slippery" roof. For a $C_t = 1.20$ the roof slope factor C_s is given by the dashed line of ASCE 7-10 Figure 7-2c.

 $p_s = C_s p_f = (0.94)(11.3) = 10.6 \text{ psf}$


Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5. Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12. Using the following equations:


$l_d = \frac{8}{3} h_d \sqrt{S}$ (width	how density) $\overline{0} - 1.5$ (drift height) [if $l_u < 20$ m of drift surcharge) ft surcharge snow load)	ft., use l _u = 20 ft.]	W		
where: $\gamma = \text{Snow density in pcf, not to exceed 30 pcf.}$ $h_d = \text{Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9.}$ $l_u = W = \text{Ridge to eave distance in feet, windward side of roof.}$ S = 12/Roof Pitch $l_d = \text{Width of drift surcharge in feet.}$ $p_d = \text{Drift Surcharge Snow Load in psf}$		Balanced Unbalanced W < 20 ft with roof rafter system Unbalanced Unbalanced O.3 p. Unbalanced Other Note: Unbalanced loads need not be considered for $\theta > 30.2^{\alpha}$ (7 on 12) or for $\theta \le 2.38^{\circ}$ (1/2 on 12). FIGURE 7-5 Balanced and Unbalanced Snow Loads for Hip and Gable Roofs.			
Subject Snow Loads	Customer	Location			Job No. 2025A17
Engr. Engr. Name	STRUCTURAL EN Street Address City, ST 999	IGINEERING INC.	STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Engineering Company Inc.	Rev. – Page
2/1/2025	ph. (800) 000-0000 www.v	vebsite.com		Copyright © 2025	2

$$\begin{aligned} p_{\text{windward}} &= 0.3 \text{p}_{\text{s}} = (0.3)(10.6) = 3.2 \text{ psf} \\ p_{\text{leeward}} &= \text{p}_{\text{s}} = 10.6 \text{ psf} \end{aligned}$$

$$\gamma &= 0.13(15.0) + 14 = 15.95 \text{ pcf} \\ h_d &= .43\sqrt[3]{28}\sqrt[4]{15.0 + 10} - 1.5 = 1.42 \text{ ft. [lu} = 28 \text{ ft.]} \\ l_d &= \frac{8}{3} \times 1.42 \times \sqrt{12/4} = 6.56 \text{ ft.} \end{aligned}$$

$$p_d &= \frac{1.42 \times 15.95}{\sqrt{12/4}} = 13.1 \text{ psf} \end{aligned}$$

On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

$$2p_f = (2)(11.3) = 22.7 \text{ psf}$$

ph. (800) 000-0000 www.website.com

Copyright © 2025

⁴