Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg):	88.0 psf
Roof Pitch:	7 /12
Risk Category:	II
Eave-to-Ridge (W):	9 ft.
Terrain Category:	С
Exposure:	Partially Exposed
Thermal Factor (Ct):	1.10
Roof Surface:	Asphalt Shingles
Roof System:	Common Truss
Spacing:	24 in. o/c
Overhang:	12 in.

2. Design Loads

Top Chord Dead Load:	7	psf	
Bottom Chord Dead Load:	10	psf	
SF (Slope Factor) = $1/Cosine(\Phi) = 1.16$ (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)			
Adj. TCDL (TCDL x SF):	8.1	psf	

3. Design Assumptions

Code Standard:	ASCE 7-10
Number of Plies:	1 PLY
Bottom Chord Pitch:	0 /12

4. Snow Load Calculations

Calculate flat roof snow load $p_{\rm f}$ using the following equation:

 $p_f \!=\! 0.7 C_e C_t I_s p_g$

where:

 $\begin{array}{l} p_{f} = Flat \ Roof \ Snow \ Load \ in \ psf \\ C_{e} = 1.00 = Exposure \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-2 \ (Terrain \ Cat. \ C, \ Exp. \ Partially \ Exposed) \\ C_{t} = 1.10 = Thermal \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 7-3 \\ I_{s} = 1.00 = Importance \ Factor, \ as \ determined \ by \ ASCE \ 7-10 \ Table \ 1.5-2 \ (Risk \ Cat. \ II) \\ p_{g} = 88.0 \ psf = Ground \ Snow \ Load \ in \ psf \end{array}$

 $p_f = 0.7C_eC_tI_sp_g = 0.7(1.00)(1.10)(1.00)(88.0) = 67.8 \text{ psf}$

Subject Snow Loads	Customer McCall	Location Diamond Lake	Job No. 2025A4
Engineer	Company Name	Sine Company Name	Rev. -
Date 1/2/2025	123 Street City, State 12345 ph. (888) 777-5555 www.v	COMPANY LOGO	Page 1

A minimum roof snow load, pm shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:

Where p_g is 20 psf or less: $p_m=I_sp_g$ Where p_g exceeds 20 psf: $p_m=I_s(20)$

Roof slope is greater than 15 degrees, the minimum roof snow load, pm, does not apply.

For locations where p_g is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees (30.26°) is greater than W/50 = 0.2, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load ps using the following equation:

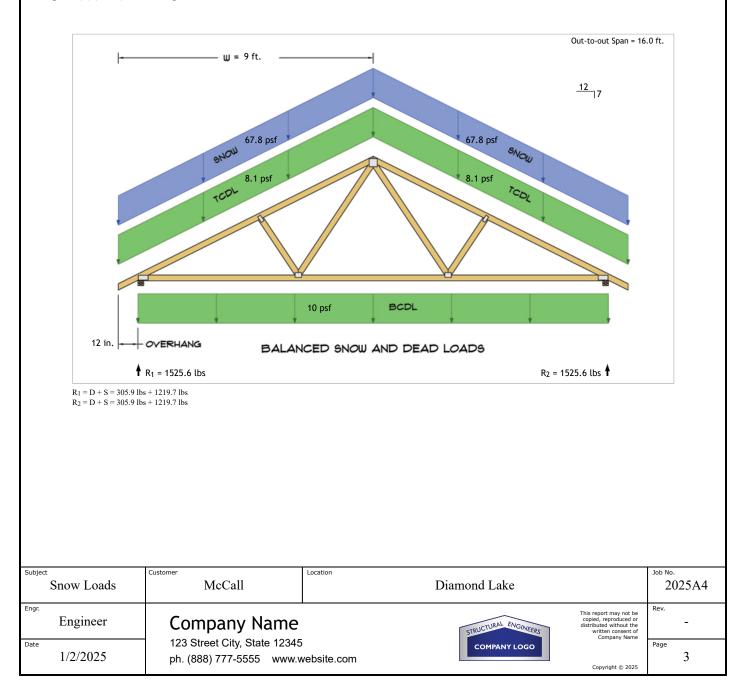
 $p_s = C_s p_f$

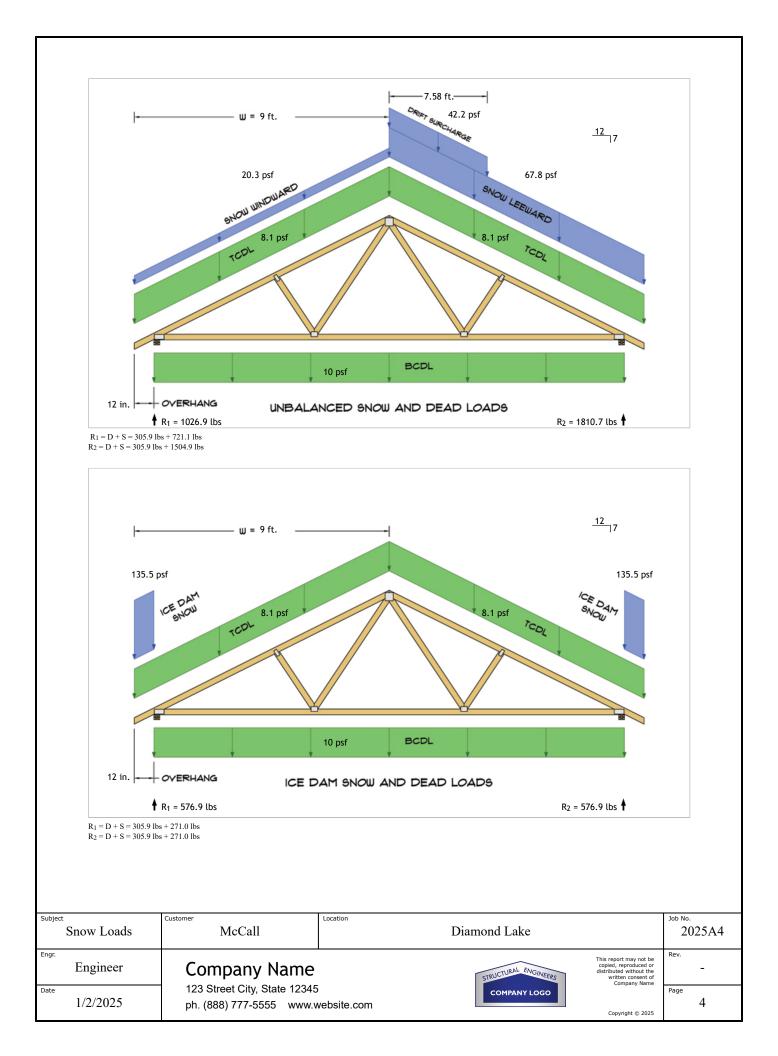
where:

 $p_s =$ Sloped Roof Snow Load in psf $C_s = 1.00 =$ Roof Slope Factor, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2 $p_f =$ Flat Roof Snow Load in psf

Roof surface (Asphalt Shingles) is considered a "non-slippery" roof. For a $C_t = 1.10$ the roof slope factor C_s is given by the solid line of ASCE 7-10 Figure 7-2b.

 $p_s = C_s p_f = (1.00)(67.8) = 67.8 \text{ psf}$


Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5. Unbalanced snow loads are required for roof pitches between 1/2 on 12 to 7 on 12. Using the following equations:


$\gamma = 0.13 p_g + 14 \text{ (snow density)}$ $h_d = .43 \sqrt[3]{l_u} \sqrt[4]{p_g + 10} - 1.5 \text{ (drift height) [if } l_u < 20 \text{ ft., use } l_u = 20 \text{ ft.]}$ $l_d = \frac{8}{3} h_d \sqrt{S} \text{ (width of drift surcharge)}$ $p_d = h_d \gamma / \sqrt{S} \text{ (drift surcharge snow load)}$						
where:				Balanced $\downarrow \downarrow \downarrow$		
	γ = Snow density in pcf, not to exceed 30 pcf. h_d = Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9. l_u = W = Ridge to eave distance in feet, windward side of roof. S = 12/Roof Pitch l_d = Width of drift surcharge in feet. p_d = Drift Surcharge Snow Load in psf			Unbalanced W < 20 ft with roof rafter system Unbalanced Unbalanced Unbalanced 0.3 ps Unbalanced 0.3 ps Unbalanced 0.4 ps 0.5 p		
Subject	Snow Loads	Customer McCall	Location	Diamond Lake		Job No. 2025A4
Engr.	Engineer	Company Name		STRUCTURAL ENGINEERS	This report may not be copied, reproduced or distributed without the written consent of Company Name	Rev.
Date	1/2/2025	123 Street City, State 12345 ph. (888) 777-5555 www.v	COMPANY LOGO		Page 2	

$$\begin{aligned} p_{\text{windward}} &= 0.3 \text{ps} = (0.3)(67.8) = 20.3 \text{ psf} \\ p_{\text{leeward}} &= \text{ps} = 67.8 \text{ psf} \end{aligned}$$

$$\gamma &= 0.13(88.0) + 14 = 25.44 \text{ pcf} \\ h_d &= .43\sqrt[3]{20}\sqrt[4]{88.0 + 10} - 1.5 = 2.17 \text{ ft. [lu} = 20 \text{ ft.]} \\ l_d &= \frac{8}{3} \times 2.17 \times \sqrt{12/7} = 7.58 \text{ ft.} \end{aligned}$$

$$p_d &= \frac{2.17 \times 25.44}{\sqrt{12/7}} = 42.2 \text{ psf} \end{aligned}$$

On warm roofs apply a distributed $2p_f$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

$$2p_f = (2)(67.8) = 135.5 \text{ psf}$$

